This is an extension to this post:-
The reason I to have to create this as a separated thread, is because that inline \LaTeX ($ $
) isn’t supported inside [details]
tags, or HTML tags.
I believe \LaTeX here is actually rendered with MathJax.
Native details tag
- Subscripts and Superscripts
$e^x$
- e^x
$3^{3^{3^3}}$
- 3^{3^{3^3}}
$a_1$
- a_1
$a_1^2 + a_2^2 = a_3^2$
- a_1^2 + a_2^2 = a_3^2
$x^{2 \alpha} - 1 = y_{ij} + y_{ij}$
- x^{2 \alpha} - 1 = y_{ij} + y_{ij}
- Greek letters
$\alpha \beta \gamma \rho \sigma \delta \epsilon$
- \alpha \beta \gamma \rho \sigma \delta \epsilon
- Binary operators
$\times \otimes \oplus \cup \cap$
- \times \otimes \oplus \cup \cap
- Relation operators
$< > \subset \supset \subseteq \supseteq$
- < > \subset \supset \subseteq \supseteq
- Others
$\int \oint \sum \prod$
- \int \oint \sum \prod
HTML <details> tag
- Subscripts and Superscripts
$e^x$
- e^x
$3^{3^{3^3}}$
- 3^{3^{3^3}}
$a_1$
- a_1
$a_1^2 + a_2^2 = a_3^2$
- a_1^2 + a_2^2 = a_3^2
$x^{2 \alpha} - 1 = y_{ij} + y_{ij}$
- x^{2 \alpha} - 1 = y_{ij} + y_{ij}
- Greek letters
$\alpha \beta \gamma \rho \sigma \delta \epsilon$
- \alpha \beta \gamma \rho \sigma \delta \epsilon
- Binary operators
$\times \otimes \oplus \cup \cap$
- \times \otimes \oplus \cup \cap
- Relation operators
$< > \subset \supset \subseteq \supseteq$
- < > \subset \supset \subseteq \supseteq
- Others
$\int \oint \sum \prod$
- \int \oint \sum \prod
Nonetheless, it works inside spoiler: e^x
To write Math, use $ $
bracing for single line, and for multiple lines
$$
$$
- Subscripts and Superscripts
$e^x$
- e^x
$3^{3^{3^3}}$
- 3^{3^{3^3}}
$a_1$
- a_1
$a_1^2 + a_2^2 = a_3^2$
- a_1^2 + a_2^2 = a_3^2
$x^{2 \alpha} - 1 = y_{ij} + y_{ij}$
- x^{2 \alpha} - 1 = y_{ij} + y_{ij}
- Greek letters
$\alpha \beta \gamma \rho \sigma \delta \epsilon$
- \alpha \beta \gamma \rho \sigma \delta \epsilon
- Binary operators
$\times \otimes \oplus \cup \cap$
- \times \otimes \oplus \cup \cap
- Relation operators
$< > \subset \supset \subseteq \supseteq$
- < > \subset \supset \subseteq \supseteq
- Others
$\int \oint \sum \prod$
- \int \oint \sum \prod
Although there are more to this, doing too much can be an eyesore.
References: